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STEREOSELECTIVE C-C BOND FORMATION IN CARBOHYDRATES BY RADICAL CYCLIZATION 

REACTIONS-IV. APPLICATION FOR THE SYNTHESIS OF o~-C(1)-GLUCOSIDES. 

Alam De Mesmaeker, Pascale Hoffmann, Beat Ernst, Paul Hug, Tammo Winkler 

Central Research Laboratories, Ciba-Geigy Ltd., CH-4002 Basel, Switzerland. 

Summary: The synthesis of tx-C(l)-glucosides is reported using our new strategy for the C-C bond formation at 

the anomeric center by radical cyclization reactions. 

In the previous communication l) we proposed a new strategy based on a radical cyclization reaction for the 

stereoselective C-C bond formation at the anomeric center 24). We have shown that, indeed, the new C-C bond 

was formed in high yields and selectively either with the o~ or with the [B configuration at C(1). This stereocontrol 

together with the efficiency of the radical cyclizations even with unactivated double and triple bonds represent 
processes 3) certainly an advantage in comparison with the intermolecular . However, in order to represent a 

synthesis of C(1)-glycosides, an auxiliary group X which can be used later on for the cleavage of the newly 

formed five-membered ring was needed. We report here the successful use of an acetal function (X=CH-OMe) 

as auxiliary group (scheme 1). 
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The mixed acetals 7, 1_/1, 1__55 were prepared by alkylation of the free hydroxylic function at C(2) of 55) with 

MeO-CHBr-COzMe 6) followed by reduction with diisobutylaluminium hydride to the corresponding aldehyde 

67) and Wittig reaction, without interference of the selenophenyl group at the anomeric position which plays the 

role of radical precursor and protective group (scheme 2). The compound 7 was also obtained in one step by 

coupling with the dimethylacetal of acrolein under acidic catalysis. 
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5_ Bn=CH2-Ph 6 7 

i= 1.6eq. Nail, 2eq. MeO-CH-Br-CO2Me, 0.3eq. Bu4NI, THF, RT, 18 h, 76%; ii= leq. iBuEAIH, -78°C, 4 h, 

93%; iii= 1.3eq.PPh3MeBr, 1.1eq. nBuLi, THF, -78°C--*RT, 24 h, 65%; iv= 20eq. CH2--CH-CH(OMe) 2, 0.1eq. 

TsOH. pyridine, THF, reflux, 1 h, 50%. 
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Treatment of 7 by nBu3SnH in the presence of AIBN as radical initiator furnished in addition to the expected 
products 8, I0 the L-idose derivative 98.9) (scheme 3). As in the case of the model compound (having X--CH2) 

discussed in the preceding communication l), the formation of 9- can be rationalized by an intramolecular 

hydrogen atom transfer 1°) from C(5)-H to the cyclized radical having the ct configuration at C(8). This 

epimerizarion at C(5) seems to be even more favoured in the case of 7 and could be prevented only by working 

under concentrated conditions (0.3M: lg of 7_ in 5ml of Phil), fortunately without the formation of uncyclized 

product H). The absence of reduced compound even at 0.3M implies a high rate 12) for the cyclization of the 

anomeric stabilized radical to the unactivated C=C bond by a 5-exo mode. 

Scheme 3 
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0.3 50 not detected 50 

i= 1.3eq. nBu3SnH, 0.1eq. AIBN, Phil, reflux, 24 h: combined isolated yields > 89%. 
• 13) The intramolecular hydrogen atom transfer from C(5) to c(-C(9) occurred even when a secondary radical was 

obtained after cyclization (scheme 4): 10% of the C(5) epimerized compound 13 were isolated under our 

standard reactions conditions (0.01MS)). This hydrogen transfer is favoured by the increase in radical 

stabilization (secondary at C(9) ---" tertiary stabilized at C(5)). In addition to the interaction between the SOMO 

of the single electron with the lone pair of the ring oxygen atom, the vicinal C-O bonds can also contribute 14) to 
the stabilization of the C(5) centered radical 15). 

Scheme 4 
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11 Rl= Et, R2= H 71 ( 1(~+!4): 13--90:10) 12 I_./3 14 

15 R 1= H, R2= CO2Me 90 16 1_/7 (not detected) 18 

i= 1.3eq. nBu3SnH , 0.1eq. AIBN, Phil (0.01M), reflux, 24 h. 
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Moreover, the lower energy transition state 16) in which the three atoms C(5)-H-C(9) can adopt a colinear 

arrangement is accessible without strain. No hydrogen migration was detected when a more stabilized radical 

was formed after cyclization 1(.~, scheme 4). 

The usefulness of our strategy for the construction of C(1)-glycosides is demonstrated by the following example 

( scheme 5 ). The 1:I mixture of isomers 8 and !0_0 was oxydized 17) to the lactones 1___99 and 20 which were 

separated by chromatography on silica gel. After ring opening with LiA1H 4 and selective protection of the two 

hydroxylic functions, the compound 21 was ready for further elaboration into naturally occurring C-branched 

sugars. The same sequence was realized on 1__22 and 1__44. 

Scheme 5 
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21 
i= 1.1eq.mCPBA, 0.5eq. BF3.Et20, CH2CI2, RT, 17 h, 82%; ii= separation of 20; iii= 0.6eq. LiAIH4, THF, 

-20°C--'RT, 1 h, 77%; iv= 1.1eq. tBuPh2SiCl, 2eq. imidazole, DMF, RT, 16 h, 84%; v = 1.4eq. Nail, 2eq. MeI, 

THF, RT, 3 h, 86%. 

The described strategy is currently applied to the synthesis of complex C-branched sugars. 
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was corroborated in most cases by 13C-NMR. Selected IH-NMR data (400MHz, CDCI3, 8(ppm), 
J(Hz)); 9a; 1.11 (Iq 9, d, Ja.9=6.6); 2.26 (H a, m); 3.24 (OMe, s); 3.51 (lq 4, ddd, J3_4=3.5, J4.5=2.6, 
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( BnO. 10Bn ~ ~' g / 'H-NOEs observed 

BnO C)Me " "  

9._.~a 

9b. 1.18 (H 9, d, .I8.9=6.7); 2.20 (}']8, m); 3.43 (H 4, ddd, .]'3_4=2.4, .[4.5=1.6, J2.4=].2); 3.47 (OMe, s); 
3.79 (H 6, dd, .[6.6,=10.L .[6.5=5.6); 3.67 (H(, dd, J6,.5=6.4); 3.86 (H 5, ddd); 3.92 (H 3, dd, .[2.3=2.4); 
4.04 (H 1, dd, .[1_2=2.3, .[1_s--4.3); 4.]1 (H 2, ddd); 4.41 and 4.62 (-O-CHE-Ph, AB, .[=]2.2); 4.51 and 
4.56 (-O-CHrPh, AB, .[=]2.0); 4.52 and 4.59 (-O-CHrPh, AB, .[=12.0); 4.87 (H 7, d, .[7.8=6.2); 
7.26-7.40 (}-]~, m). 
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