STEREOSELECTIVE C-C BOND FORMATION IN CARBOHYDRATES BY RADICAL CYCLIZATION REACTIONS-IV. APPLICATION FOR THE SYNTHESIS OF α -C(1)-GLUCOSIDES.

Alain De Mesmaeker*, Pascale Hoffmann, Beat Ernst, Paul Hug, Tammo Winkler Central Research Laboratories, Ciba-Geigy Ltd., CH-4002 Basel, Switzerland.

Summary: The synthesis of α -C(1)-glucosides is reported using our new strategy for the C-C bond formation at the anomeric center by radical cyclization reactions.

In the previous communication¹⁾ we proposed a new strategy based on a radical cyclization reaction for the stereoselective C-C bond formation at the anomeric center $2-4$). We have shown that, indeed, the new C-C bond was formed in high yields and selectively either with the α or with the β configuration at C(1). This stereocontrol together with the efficiency of the radical cyclizations even with unactivated double and triple bonds represent certainly an advantage in comparison with the intermolecular processes³). However, in order to represent a synthesis of C(1)-glycosides, an auxiliary group X which can be used later on for the cleavage of the newly formed five-membered ring was needed. We report here the successful use of an acetal function (X=CH-OMe) as auxiliary group (scheme 1).

The mixed acetals $\frac{7}{2}$, 11, 15 were prepared by alkylation of the free hydroxylic function at C(2) of 5^{5} with MeO-CHBr-CO₂Me⁶⁾ followed by reduction with diisobutylaluminium hydride to the corresponding aldehyde 6^{7}) and Wittig reaction, without interference of the selenophenyl group at the anomeric position which plays the role of radical precursor and protective group (scheme 2). The compound 7 was also obtained in one step by coupling with the dimethylacetal of acrolein under acidic catalysis.

 $i= 1.6$ eq. NaH, 2eq. MeO-CH-Br-CO₂Me, 0.3eq. Bu₄NI, THF, RT, 18 h, 76%; ii= 1eq. iBu₂AIH, -78°C, 4 h, 93% ; iii= 1.3eq.PPh₃MeBr, 1.1eq. nBuLi, THF, -78°C \rightarrow RT, 24 h, 65%; iv= 20eq. CH₂=CH-CH(OMe)₂, 0.1eq. TsOH. pyridine, THF, reflux, 1 h, 50%.

Treatment of 7 by nBu₃SnH in the presence of AIBN as radical initiator furnished in addition to the expected products 8, 10 the L-idose derivative $9^{8,9}$ (scheme 3). As in the case of the model compound (having X=CH₂) discussed in the preceding communication¹⁾, the formation of 9 can be rationalized by an intramolecular hydrogen atom transfer¹⁰⁾ from C(5)-H to the cyclized radical having the α configuration at C(8). This epimerization at C(5) seems to be even more favoured in the case of 7 and could be prevented only by working under concentrated conditions (0.3M: 1g of 7 in 5ml of PhH), fortunately without the formation of uncyclized $product¹¹$. The absence of reduced compound even at 0.3M implies a high rate¹²⁾ for the cyclization of the anomeric stabilized radical to the unactivated C=C bond by a 5-exo mode.

i = 1.3eq. nBu₃SnH, 0.1eq. AIBN, PhH, reflux, 24 h: combined isolated yields $\geq 89\%$.

The intramolecular hydrogen atom transfer from C(5) to α -C(9) occurred even when a secondary radical¹³ was obtained after cyclization (scheme 4): 10% of the C(5) epimerized compound 13 were isolated under our standard reactions conditions $(0.01M⁸)$. This hydrogen transfer is favoured by the increase in radical stabilization (secondary at $C(9) \rightarrow$ tertiary stabilized at $C(5)$). In addition to the interaction between the SOMO of the single electron with the lone pair of the ring oxygen atom, the vicinal C-O bonds can also contribute¹⁴⁾ to the stabilization of the $C(5)$ centered radical¹⁵).

i= 1.3eq. nBu₃SnH, 0.1eq. AIBN, PhH (0.01M), reflux, 24 h.

Moreover, the lower energy transition state¹⁶⁾ in which the three atoms $C(5)$ -H-C(9) can adopt a colinear arrangement is accessible without strain. No hydrogen migration was detected when a more stabilized radical was formed after cyclization $(15,$ scheme 4).

The usefulness of our strategy for the construction of $C(1)$ -glycosides is demonstrated by the following example (scheme 5). The 1:1 mixture of isomers 8 and 10 was oxydized¹⁷⁾ to the lactones 19 and 20 which were separated by chromatography on silica gel. After ring opening with LiAlH₄ and selective protection of the two hydroxylic functions, the compound 21 was ready for further elaboration into naturally occurring C-branched sugars. The same sequence was realized on 12 and 14.

 $i= 1.1$ eq.mCPBA, 0.5eq. BF₃.Et₂O, CH₂Cl₂, RT, 17 h, 82%; ii= separation of 20; iii= 0.6eq. LiAlH₄, THF, $-20^{\circ}\text{C}\rightarrow\text{RT}$, 1 h, 77%; iv= 1.1eq. tBuPh₂SiCl, 2eq. imidazole, DMF, RT, 16 h, 84%; v = 1.4eq. NaH, 2eq. MeI, THF, RT, 3 h, 86%.

The described strategy is currently applied to the synthesis of complex C-branched sugars. Acknowledgments: The authors thank Dr. G. Szekely for the separation of the isomers of 8-10.

REFERENCES AND NOTES
1. Stereoselective C-C

- 1. Stereoselective C-C Bond Formation in Carbohydrates by Radical Cyclization Reactions-III: A. De Mesmaeker, P. Hoffmann, B. Ernst, P. Hug, T. Winkler, Tetrahedron Lett., preceding paper.
- 2. For radical cyclization reactions in carbohydrates see references cited in 1.
- 3. For C-C bond formation by intermolecular addition of glycopyranosidic radicals to olefins see references cited in 1.
- 4. For some other methods to form C-glycosides see for example a) A. O. Stewart, R. M. Williams, J. Am. Chem. Soc., <u>107</u>, 4289, (1985); b) A. Giannis, K. Sandhoff, Tetrahedron Lett., 26, 1479, (1985); c) M. D. Lewis, J. K. Cha, Y. Kishi, J. Am. Chem. Soc., 104, 4976, (1982); d) A. H. Davidson, L. R. Hughes, S. S. Qureshi, B. Wright, Tetrahedron Lett., 29, 693, (1988); e) D. Rouzaud, P. Sinay, J. Chem. Soc., Chem. Commun., 1353, (1983); f) J. E. Baldwin, R. M. Adlington, N. G. Robinson, Tetrahedron Lett., 29, 375, (1988); g) S. J. Danishefsky, S. De Ninno, P. Lartey, J. Am. Chem. Soc., 109, 2082, (1987); h) T. Kametani, K. Kawamura, T. Honda, J. Am. Chem. Soc., 109, 3010, (1987), and reference cited there.
- The derivative 5 was prepared on a multigram scale and in high yield by substitution of the anomeric chloride by PhSeH (MeCN, NEt₃, RT) having an OAc group at $C(2)$ which was then cleaved by MeONa (MeOH, RT). 5.
- The reaction mixture contained mainly the substitution product and the starting material 5 which was readily recovered after acetylation ($Ac₂O$, pyridine, RT). 6.
- The aldehyde 6 was filtered through silica gel and dried under high vacuum. Addition of molecular sieves 4A to the solution of 6 in THF prior to the Wittig reaction is recommended for the complete removal of water from 6 (hydrate formation). 7.
- In all the radical cyclizations described here, the reagents were mixed at once. **8.**
- The isomers ratios were determined by ${}^{1}H\text{-}NMR$ (300MHz) on the reaction mixtures. The stereoisomers were separated by chromatography on silica gel and their structures elucidated on the basis of completely analyzed ¹H-NMR spectra and ¹H-NOE experiments. The configuration at C(8) 9.

was corroborated in most cases by 13 C-NMR. Selected ¹H-NMR data (400MHz, CDCl₃, δ (ppm), J(Hz)); $9a$; 1.11 (H₉, d, J_{8.9}=6.6); 2.26 (H₈, m); 3.24 (OMe, s); 3.51 (H₄, ddd, J_{3.4}=3.5, J_{4.5}=2.6, $J_{2,\mathbf{4}}$ =1.0); 3.69 (H₆, dd, $J_{6.6}$.=10.0, $J_{6.5}$ =6.3); 3.73 (H₆, dd, $J_{6.5}$ =5.8); 3.84 (H₅, ddd); 3.87 (H₂, ddd, $J_{2,3}=3.2$, $J_{1,2}=3.5$); 3.92 (H₃, dd); 3.98 (H₁, dd, J_{1.8}=4.9); 4.43 and 4.60 (-O-CH₂-Ph, AB, J=12.0); 4.50 and 4.58 (-O-CH₂-Ph, AB, J=12.0); 4.58 and 4.63 (-O-CH₂-Ph, AB, J=12.1); 4.83 (H₇, d, $J_{7.8}=5.9$; 7.20-7.38 (H_{Ar} , m).

9a <u>9b</u>. 1.18 (H₉, d, J_{8.9}=6.7); 2.20 (H₈, m); 3.43 (H₄, ddd, J₃₄=2.4, J₄₋₅=1.6, J₂₋₄=1.2); 3.47 (OMe, s); 3.59 (H₆, dd, J_{6.6},=10.1, J_{6.5}=5.6); 3.67 (H₆', dd, J_{6'.5}=6.4); 3.86 (H₅, ddd); 3.92 (H₃, dd, J_{2.3}=2.4); 4.04 (H₁, dd, $J_{1.2}=2.3$, $J_{1.8}=4.3$); 4.11 (H₂, ddd); 4.41 and 4.62 (-O-CH₂-Ph, AB, $J=12.2$); 4.51 and 4.56 (-O-CH₂-Ph, AB, J=12.0); 4.52 and 4.59 (-O-CH₂-Ph, AB, J=12.0); 4.87 (H₇, d, J_{7.8}=6.2); 7.26-7.40 (H_{Ar} , m).

- 10. For intramolecular hydrogen atom transfer in the presence of nBu₃SnH see references cited in 1.
- 11. No uncyclized product could ever be detected by $\rm{^1H\text{-}NMR}$ (300MHz) of the crude reaction mixtures.
- 12. For some rate constants for 5-exo radical cyclizations see A. L. J. Beckwith, Tetrahedron, 37, 3100, (1981).
- 13. Due to the very fast reduction of radicals by nBu₃SnH, generally intramolecular hydrogen atom transfer can only compete when occurring from an activated C-H bond (allylic, benzylic) to a destabilized radical (vinylic, arylic, cyclopropylic) and / or under high dilution conditions¹⁰.
- 14. a) D.H.R. Barton, W. Hartwig, W.B. Motherwell, J. Chem. Soc., Chem. Commun., 447, (1982); b) J. Dupuis, B. Giese, D. Rüegge, H. Fischer, H.G. Korth, R. Sustmann, Angew. Chem. Int. Ed. Engl., 23, 896, (1984).
- 15. The influence of the β C-O bonds on the ease of this intramolecular hydrogen atom transfer is under current investigation.
- 16. Colinearity is considered to be favoured in intramolecular hydrogen atom abstractions by alkoxy radicals; see reference 12 and A. E. Dorigo, K. N. Houk, J. Am. Chem. Soc., 109, 2195, (1987).
- 17. P. A. Grieco, T. Oguri, Y. Yokoyama, Tetrahedron Lett., 419, (1978).

(Received in Germany 17 August 1989)